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Renormalization of QCD Coupling Constant in
Terms of Physical Quantities
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A renormalization scheme is suggested where QCD input parametersÐ quark
mass and coupling constant Ð are expressed in terms of gauge-invariant and
infrared-stable quantities. For the QCD charge renormalization the quark
anomalous electromagnetic moment is used. It turns out that in the renormalization
procedure QED and QCD do not differ. The examination of the quark scattering
amplitude indicates confinement phenomena in QCD.

Usually, in the charge and mass renormalization procedure the so-called
MOM scheme is used, where the input parameters of the theory appearing

in the action are expressed in terms of the on-mass-shell Green’ s functions

(Itzykson and Zuber, 1980; Ramond 1989). Another widely accepted scheme,

MS, deals only with the divergent parts of the Green’ s functions, not appealing

to any condition on momenta. Evidently, due to renormalization invariance,
any scheme is admissible.

In gauge theories like quantum electrodynamics (QED) and quantum

chromodynamics (QCD) the input parameters are considered to be gauge

invariant and infrared stable (i.e., not containing infrared divergences, gener-

ated by a massless gauge field). Let us for brevity call any quantity with

these properties a physical quantity. Surely, the observables, being measurable,
should be physical quantities, but the converse may not be true (as an example,

consider any function of field strength F m n in QED). Since Green’ s functions

are not infrared stable and depend on a gauge [in general their renormalization

factors are nonlocal quantities (Basseto et al., 1987)] the interpretation of

the results obtained from the schemes mentioned above may be obscured.
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Renormalized physical quantities may share undesirable properties originating

from the dynamics of nonphysical degrees of freedom, and the extraction of

physical information may be complicated.
Therefore, from our point of view, in gauge theories the most illuminating

approach would use a scheme operating only with physical degrees of free-

dom, thus allowing us to avoid such complications. The recipe is as follows:

calculate as many physical quantities as there are input parameters and express

the latter in terms of physical quantities. So, in QED as well as in QCD,

containing two input parametersÐ coupling constant and fermion mass (for
simplicity consider only one flavor)Ð we need two physical quantities:

S a 5 S a ( g0, m0; n); S b 5 S b ( g0, m0; n) (1)

where g0 and m0 are input parameters, the dependence of S on momenta,

being here irrelevant, is omitted, n is a space-time dimension, and hereafter

we use dimensional regularization. In QED and QCD S a and S b have no

limit at n 5 4Ð regularization cannot be removed in (1). Now resolve g0

and m0 in terms of S a , S b , and n and substitute into the expression for any

other physical quantity S g . In renormalizable theories, after all the calculations

are performed, S g becomes finite in terms of S a , S b Ð regularization can

be removed:

lim
n ® 4

S g ( g0, m0; n) 5 lim
n ® 4

S g ( g0( S a , S b ; n), m0( S a , S b ; n); n)

5 lim
n ® 4

S *g ( S a , S b ; n)

[ s g , ` (2)

This scheme, describing the renormalization procedure as the expression

of physical quantities in terms of physical quantities,3 allows us to avoid any
significant difficulties and seems most transparent from a physical point

of view.

The aim of the present paper is to develop such a scheme for QCD.

It is clear that we need two physical quantities. In (Tarrach (1981)) it

was demonstrated that in the covariant gauge the solution of the equation

G 2 1( p, g0, m0, j ; n) C in( p) 5 0 (3)

in the framework of perturbation theory can be expressed as

m 5 m0 1 g2
0 d m1(m0; n) 1 g4

0 d m2(m0; n) 1 ? ? ? (4)

where d m1 and d m2 do not depend on the gauge parameter j and are infrared

3 A similar procedure (in a different context) was discussed already in the early days of QED
(Dyson, 1949).
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stable. In (3), G is a quark propagator and C in( p) is the solution of the

Dirac equation ( g m p m 2 m) C in( p) 5 0. The investigation in an axial gauge

(Japaridze et al., 1991) confirms the gauge invariance and infrared stability
of m. In (Japaridze et al. (1991)) it was shown that up to order g0

6 the quark

propagator has a simple pole at p2 5 m2. So, the quark pole mass can be

considered as one of the S ’ s in relations (1), and to complete the scheme we

have to find the second physical quantity in QCD.

We propose the quark anomalous electromagnetic moment, defined, as

usual, from the amplitude of quark elastic scattering on an external electro-
magnetic field:

^ p | j m | p 1 k & A m (k) 5 C in( p) H g m F1(k
2) (5)

1
i

2
[ g m , g n ]k

n F2(k
2) J C in( p 1 k)A m (k)

The anomalous electromagnetic moment x is defined as F2(0).

We calculate x up to order g6
0 regularizing all the divergences (ultraviolet

and infrared) by means of space-time dimension n:

x 5 g2
0 x 1(m0; n) 1 g4

0 x 2(m0; n) (6)

where x i is the i-loop contribution. The gauge-dependent terms cancel in x i ;

x 1 is infrared stable and in x 2 the infrared divergence appears. To obtain the

expression of order g4
0, containing only g0-associated divergences, we must

use the relation [see (4)]

m0 5 m 2 g2
0 d m1(m0, n) 1 O( g4

0) 5 m 2 g2
0 d m1(m, n) 1 O( g4

0)

in (6), i.e., reexpand the loop expressions:

x 5 g2
0 x 1(m 2 g2

0 d m1(m; n); n) 1 g4
0 x 2(m; n)

5 g2
0 x 1(m; n) 1 g4

0 1 x 2(m; n) 2 d m1

- x 1(m; n)

- m 2 (7)

This reexpansion generates the infrared-divergent term - x 1 / - m, which cancels

the infrared divergence in x 2.

So, x is gauge invariant and infrared stable. Omitting the intermediate

calculations, we quote the result:

x 5 CF

g*
2

0

8 p 2 H 1 2
g*

2

0

8 p 2 F 11CA 2 2nf

3 1 1

n 2 4
1 ln

m2

4 p n 2 2
1 F 1 O( g2

0, n 2 4) G J (8)
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where CA [ N, CF [ (N 2 2 1)/2N are the invariants of the SU(N ) group,

g*
2

0 [ g2
0 n n 2 4 is the dimensionless coupling constant, n is a mass scale

parameter, appearing in the framework of dimensional regularization (Itzyk-
son and Zuber, 1980; Ramond, 1989), nf is the number of flavors, m is the

pole mass of the scattered quark, the external momenta obey p2 5 ( p 1 k)2

5 m2, and for the finite part F see the Appendix.

Thus in terms of the renormalization procedure QED and QCD do not

differÐ in both theories the input parameters can be expressed in terms of

physical quantities. Surely, any scheme can be used, but our goal was to
demonstrate that it is possible to renormalize the QCD coupling constant in

terms of physical degrees of freedom. The scheme is described by the relations

m0 5 m0(m, x ; n), g0 5 g0(m, x ; n) (9)

To use (9) we need the numerical values of m and x . The gauge invariance

and infrared stability of these quantities does not mean necessarily that they

are measurable directly, but guarantees that their numerical values may be

extracted from the experimental data. Of course, m and x depend not only

on m0 and g0, but also on all other input parameters of, say, the standard model,
but for the considered problem it is enough to analyze only QCD corrections.

The scheme (9) may be not suitable from the point of view of numerical

convergenceÐ it depends on numerical values of m and x . To improve he

convergence, one has to introduce the so-called effective parameters (Itzykson

and Zuber, 1980; Ramond, 1989) gR and mR, i.e., move to another scheme.
It should be pointed out that some statements formulated in terms of effective

parameters (say, the increasing of the QCD coupling constant in the infrared

region, interpreted sometimes as a physical effect of increasing force between

quarks at large distances) are scheme dependent and are not valid in another

scheme. In other words, since the effective parameters are chosen arbitrarily,

they cannot affect the physical results.
To see this, let us illustrate how the renormalization group equation and

renormalization scheme arise in quantum field theory. It is transparent in

dimensional regularization, where we have two parameters m0 and g2
0 5

g*
2

0 v4 2 n. The mass scale v defines the dimension of g0, providing the dimen-

sionless action. The g*0 and v are not independent:

g2
0 5 g*

2

0 (v1)v
4 2 n
1 5 g*

2

0 (v2)v
4 2 n
2 (10)

or

dg*
2

0 (v)

dv
1

4 2 n

v
g*

2

0 (v) 5 0 (11)

The renormalization group equation (11) can be presented in a familiar form

by introducing the effective parameter gR(v) by means of the relation
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g*
2

0 5 g*
2

0 ( g2
R(v), v) (12)

leading to

v
dg2

R(v)

dv
5 b ( g2

R, v) (13)

where

b 5 lim
n ® 4

1

- g*
2

0 / - g2
R F (n 2 4)g*

2

0 2
- g*

2

0

- v G (14)

The renormalization scheme is specified by relation (12); then from (14) we

obtain the appropriate b -function. For example, the choice

g*
2

0 5 c1(n)g2
R(v) 1 c2(n)g4

R(v) 1 ? ? ? (15)

results in

b ( gR) 5 lim
n ® 4

g2
R(n 2 4) 1 1 2

c2(n)

c1(n)
g2

R 1 ? ? ? 2 (16)

Particular ci lead to particular schemes [e.g., MS is obtained if we choose ci

5 ai /(n 2 4)i]. The introduction of mR(v) is based on the same argument.

So, the behavior of effective charge defined through any particular

scheme (e.g., leading to asymptotic freedom), being scheme dependent, may

not lead to any valuable resultsÐ the behavior and numerical value of effective

parameters depend on our choice and are not defined from the theory alone.
Thus, the advantage of scheme (9), besides gauge invariance and infrared

stability, is that it does not operate with effective parameters, allowing us to

avoid conclusions that are insignificant from the physical point of view.

As becomes evident, the behavior of gR and mR does not lead to a

scheme-independent conclusion, e.g., the absence of quarks and gluons in

asymptotic states. On the other hand, from the renormalizability of QCD it
follows that in the expansion of any physical quantity s g (say, Wilson loop)

s g 5 o
`

i 5 0
x i s g ,i (17)

the coefficients s g ,i are gauge invariant, infrared stable, and contain no uitarvi-
olet divergences at n 5 4, i.e., the s g ,i are finite.

So, the following question arises: Does this lead us to conclusion that

quark and gluon physical degrees of freedom are observable, i.e., do quarks

and gluons appear in asymptotic states?
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The answer may be obtained from the examination of the scattering

matrix. Let us propose the following criterion: if at least one S-matrix element

built up in terms of fields is finite, the appropriate quanta appear in asymptotic

states as particles.

In QED it is well known that the electron elastic scattering amplitude

is infrared divergent, and taking account of photon emission leads to cancella-

tion of infrared singularitiesÐ only the inclusive cross sections are finite

(Itzykson and Zuber, 1980; Ramond, 1989). That is why we may say that

from Dirac±Maxwell equations there follows the existence of electrons and

photons as observable particles. Of course, we a priori know that they exist

and the S-matrix analysis is in accordance with the experimental data.

We consider the S-matrix element of quark scattering on an external

electromagnetic field. Note first that the existence of x [ F2(0) [see (5)]

does not mean at all that the amplitude of elastic scattering is finiteÐ in full

analogy with QED, the infrared divergences remain in the elastic amplitude

after the mass and charge renormalization. Let us consider gluon emission,

assuming that the inclusive cross section may be finite. According to the

LSZ reduction technique (Itzykson and Zuber, 1980; Ramond, 1989), for a

gluon with momentum q in an asymptotic state we have

e r (q)

Z 1/2
3

q2D m r (q) 5
e m (q)

Z 1/2
3

q2
Z3

q2 5 Z 1/2
3 e m (q) (18)

where e m (q) is the gluon polarization vector, D m r is the gluon propagator,

and Z 3
1/2 is the gluon wave function renormalization factor. In order g*

2

0 the

contribution of the gauge field in the residue Z3 is (Itzykson and Zuber, 1980;

Ramond, 1989)

Z A
3 (q2) 5 iCA

g*2
0 v 4 2 n

2n 1 1 p n/2

3n 2 2

n 2 1

G 2(n/2 2 1) G (2 2 n/2)

G (n 2 2)
(q2)(n 2 4)/2 (19)

where G is Eulers gamma function (Bateman and Erdelyi, 1973). Z3 contri-

butes to the QCD coupling constant renormalization. To obtain the amplitude

we have to perform all the calculations before removing regularization: renor-

malize m0 and g0 by means of the relations (9), use [as we do for amplitude

(5)] the conditions p2 5 ( p 1 k)2 5 m2, q2 5 0, and then set n 5 4. The

condition q2 5 0 means that Z A
3 (0) can be equated to zero. This is analogous

to the common procedure of vanishing of tadpole-type massless integralsÐ

because of the analyticity of the theory in n we can find the region where

the result is well defined and then analytically continue it in the desired

region of n (Itzykson and Zuber, 1980; Ramond, 1989). So
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Z3(q
2) 5 Z A

3 (q2) 1 Z F
3 (q2) ®

q2 ® 0

Z F
3(0) (20)

i.e., only the fermionic field contribution survives in Z3 at q2 ® 0. This

means that only part of the g0 renormalization constant, namely the CA /2 2
2nf /3, is restored [compare with (11CA 2 2nf )/3 in (8)]. In other words, Z3(0)

does not renormalize g0.

Therefore, if we consider the gluon emission to cancel the infrared

divergences of the elastic amplitude, due to (20) the ultraviolet divergence
arises and the inclusive cross section in order g4

0 contains an unavoidable

infinity. The S-matrix elements should be the same in any scheme, but the

result is transparent in scheme (9), manipulating only the physical degrees

of freedom and not using effective parameters.

Though the discussion above the S-matrix is not a proof, it can be
considered as an indication of confinement phenomena already in the frame-

work of perturbation theory. In other words, QCD may be an example of a

field theory where fields do not necessarily refer directly to physical particles.4

The next step would be the consideration of the amplitude of colorless

bound-state scattering. At the present time we have no definite result for

this problem.
To conclude, in QCD it is possible to define the renormalization proce-

dure operating only in the space of physical degrees of freedom. Though the

use of relations (9) guarantees that the physical quantities built up in terms

of quark and gluon fields are finite, this is not enough for the existence of these

field quanta as physical particles. The examination of the quark scattering

amplitude indicates that quark and gluon field quanta do not appear in asymp-
totic states.

APPENDIX

The finite part F is

F 5 CF 1 2 55 p 2

9
2 8 g 2

E 2 3 z (3) 1 2 p 2 ln 2 1
493

12 2
2

2nf g E

3
1

49nf

18
2 22 1

26 p 2

9
1 4 g 2

E

1 CA 1 131 p 2

18
1

1675 g 2
E

108
1

17 g E

9
2 p 2 ln 2 1

3

2
z (3) 2

959

72 2
4 A long time ago Schwinger (1962), starting from the idea that fields are more fundamental
entities than particles, realized this in two-dimensional electrodynamics, where the particles,
corresponding to fermionic degrees of freedom, are absent in the exact solution.
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2
p 2

2
D 1/2

i 2 D i(6 1 4 ln D i) 1
5 p 2

2
D 3/2

i

1 D 2
i F 4 g 2

E 2
2 p 2

3
2 3 ln2 D i 1 4 ln D i 2 8 1 1 49 ln D i 2

38

27 2 Fi1

1
4

9
F 8i1 1 1 49 ln D i 2

20

27 2 Fi2 1
4

9
F 8i2 G

1 D 3
i F 1 23 ln D i 2

11

9 2 Fi3 1
1

3
F 8i3 1 (3 2 2 ln D i)F i4 2 2F 8i4 G (A1)

where D i [ m2
i /m

2, m i Þ m, the summation on i 5 1, 2, . . . , nf 2 1 is assumed,

Fi1 [ 3 F4 1 1,
n 1 2

2
,

n 2 3

2
,

n 2 2

2

2, n 2 2,
n 1 1

2 ) D i 2
Fi2 [ 2 F3 1 1,

n 2 1

2
,

n 2 2

2

n 1 1

2
,

n

2 ) D i 2
Fi3 [ 3 F4 1 1,

n 1 2

2
,

n 2 1

2
,

n 2 2

2

n 1 1

2
, 3, n 2 1 ) D i 2 (A2)

Fi4 [ 1 F2 1 1,
n 2 2

2

n 1 2

2 ) D i 2
F 8ij [

dF ij

dn
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are generalized hypergeometric functions and their derivatives (Bateman and

Erdelyi, 1973), considered at n 5 4, g E ’ 0.5771 is Eulers constant, and

z (3) [ o
`

j 5 1

1

j 3 (A3)

is the Riemann zeta function.
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